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Abstract

Graph Neural Networks (GNN) have been shown to work ef-
fectively for modeling graph structured data to solve tasks
such as node classification, link prediction and graph classi-
fication. There has been some recent progress in defining the
notion of pooling in graphs whereby the model tries to gen-
erate a graph level representation by downsampling and sum-
marizing the information present in the nodes. Existing pool-
ing methods either fail to effectively capture the graph sub-
structure or do not easily scale to large graphs. In this work,
we propose ASAP (Adaptive Structure Aware Pooling), a
sparse and differentiable pooling method that addresses the
limitations of previous graph pooling architectures. ASAP
utilizes a novel self-attention network along with a modified
GNN formulation to capture the importance of each node in
a given graph. It also learns a sparse soft cluster assignment
for nodes at each layer to effectively pool the subgraphs to
form the pooled graph. Through extensive experiments on
multiple datasets and theoretical analysis, we motivate our
choice of the components used in ASAP. Our experimental
results show that combining existing GNN architectures with
ASAP leads to state-of-the-art results on multiple graph clas-
sification benchmarks. ASAP has an average improvement of
4%, compared to current sparse hierarchical state-of-the-art
method.

1 Introduction
In recent years, there has been an increasing interest in de-
veloping Graph Neural Networks (GNNs) for graph struc-
tured data. CNNs have shown to be successful in tasks in-
volving images (Krizhevsky, Sutskever, and Hinton 2012;
He et al. 2016) and text (Kim 2014). Unlike these regu-
lar grid data, arbitrary shaped graphs have rich information
present in their graph structure. By inherently capturing such
information through message propagation along the edges
of the graph, GNNs have proved to be more effective for
graphs (Gilmer et al. 2017; Hamilton, Ying, and Leskovec
2017). GNNs have been successfully applied in tasks such
as semantic role labeling (Marcheggiani and Titov 2017),
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relation extraction (Vashishth et al. 2018b), neural ma-
chine translation (Bastings et al. 2017), document dating
(Vashishth et al. 2018a), and molecular feature extraction
(Kearnes et al. 2016). While some of the works focus on
learning node-level representations to perform tasks such
as node classification (Kipf and Welling 2017; Veličković
et al. 2017) and link prediction (Schlichtkrull et al. 2017;
Vashishth et al. 2019), others focus on learning graph-level
representations for tasks like graph classification (Bruna et
al. 2013; Henaff, Bruna, and LeCun 2015; Ying et al. 2018;
Gao and Ji 2019; Lee, Lee, and Kang 2019) and graph re-
gression (Xie and Grossman 2018; Sanyal et al. 2018). In
this paper, we focus on graph-level representation learning
for the task of graph classification.

Briefly, the task of graph classification involves predict-
ing the label of an input graph by utilizing the given graph
structure and initial node-level representations. For exam-
ple, given a molecule, the task could be to predict if it is
toxic. Current GNNs are inherently flat and lack the ca-
pability of aggregating node information in a hierarchi-
cal manner. Such architectures rely on learning node rep-
resentations through some GNN followed by aggregation
of the node information to generate the graph representa-
tion (Vinyals, Bengio, and Kudlur 2016; Li et al. 2016;
Zhang et al. 2018). But learning graph representations in a
hierarchical manner is important to capture local substruc-
tures that are present in graphs. For example, in an organic
molecule, a set of atoms together can act as a functional
group and play a vital role in determining the class of the
graph.

To address this limitation, new pooling architectures have
been proposed where sets of nodes are recursively aggre-
gated to form a cluster that represents a node in the pooled
graph, thus enabling hierarchical learning. DiffPool (Ying et
al. 2018) is a differentiable pooling operator that learns a soft
assignment matrix mapping each node to a set of clusters.
Since this assignment matrix is dense, it is not easily scalable
to large graphs (Cangea et al. 2018). Following that, TopK
(Gao and Ji 2019) is proposed which learns a scalar projec-
tion score for each node and selects the top k nodes. They
address the sparsity concerns of DiffPool but are unable to
capture the rich graph structure effectively. Recently, SAG-
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(a) Input graph (b) Cluster assignment and formation (c) Clusters scoring using LEConv (d) Top scoring clusters are selected (e) Pooled graph
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Figure 1: Overview of ASAP: (a) Input graph to ASAP. (b) ASAP initially clusters 1-hop neighborhood considering all nodes
as medoid1. For brevity, we only show cluster formations of nodes 2 & 6 as medoids. Cluster membership is computed using
M2T attention (refer Sec. 4.2). (c) Clusters are scored using LEConv (refer Sec. 4.3). Darker shade denotes higher score. (d) A
fraction of top scoring clusters are selected in the pooled graph. Adjacency matrix is recomputed using edge weights between
the member nodes of selected clusters. (e) Output of ASAP (f) Overview of hierarchical graph classification architecture.

Pool (Lee, Lee, and Kang 2019), a TopK based architecture,
has been proposed which leverages self-attention network to
learn the node scores. Although local graph structure is used
for scoring nodes, it is still not used effectively in determin-
ing the connectivity of the pooled graph. Pooling methods
that leverage the graph structure effectively while maintain-
ing sparsity currently don’t exist. We address the gap in this
paper.

In this work, we propose a new sparse pooling opera-
tor called Adaptive Structure Aware Pooling (ASAP) which
overcomes the limitations in current pooling methods. Our
contributions can be summarized as follows:
• We introduce ASAP, a sparse pooling operator capable

of capturing local subgraph information hierarchically to
learn global features with better edge connectivity in the
pooled graph.

• We propose Master2Token (M2T), a new self-attention
framework which is better suited for global tasks like
pooling.

• We introduce a new convolution operator LEConv, that
can adaptively learn functions of local extremas in a graph
substructure.

2 Related Work
2.1 Graph Neural Networks
Various formulation of GNNs have been proposed which use
both spectral and non-spectral approaches. Spectral methods
(Bruna et al. 2013; Henaff, Bruna, and LeCun 2015) aim at

1medoids are representatives of a cluster. They are similar to
centroids but are strictly a member of the cluster.

defining convolution operation using Fourier transformation
and graph Laplacian. These methods do not directly gen-
eralize to graphs with different structure (Bronstein et al.
2017). Non-spectral methods (Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2017; Xu et al. 2018;
Monti et al. 2017; Morris et al. 2018) define convolution
through a local neighborhood around nodes in the graph.
They are faster than spectral methods and easily generalize
to other graphs. GNNs can also be viewed as message pass-
ing algorithm where nodes iteratively aggregate messages
from neighboring nodes through edges (Gilmer et al. 2017).

2.2 Pooling
Pooling layers overcome GNN’s inability to aggregate nodes
hierarchically. Earlier pooling methods focused on deter-
ministic graph clustering algorithms (Defferrard, Bresson,
and Vandergheynst 2016; Fey et al. 2018; Simonovsky and
Komodakis 2017). Ying et al. introduced the first differen-
tiable pooling operator which out-performed the previous
deterministic methods. Since then, new data-driven pooling
methods have been proposed; both spectral (Ma et al. 2019;
Dhillon, Guan, and Kulis 2007) and non-spectral (Ying et
al. 2018; Gao and Ji 2019). Spectral methods aim at cap-
turing the graph topology using eigen-decomposition algo-
rithms. However, due to higher computational requirement
for spectral graph techniques, they are not easily scalable to
large graphs. Hence, we focus on non-spectral methods.

Pooling methods can further be divided into global and
hierarchical pooling layers. Global pooling summarize the
entire graph in just one step. Set2Set (Vinyals, Bengio, and
Kudlur 2016) finds the importance of each node in the graph
through iterative content-based attention. Global-Attention
(Li et al. 2016) uses an attention mechanism to aggregate



nodes in the graph. SortPool (Zhang et al. 2018) summarizes
the graph by concatenating few nodes after sorting them
based on their features. Hierarchical pooling is used to cap-
ture the topological information of graphs. DiffPool forms a
fixed number of clusters by aggregating nodes. It uses GNN
to compute a dense soft assignment matrix, making it infea-

Property DiffPool TopK SAGPool ASAP

Sparse 3 3 3

Node Aggregation 3 3

Soft Edge Weights 3 3

Variable number of clusters 3 3 3

Table 1: Properties desired in hierarchical pooling methods.

sible for large graphs. TopK scores nodes based on a learn-
able projection vector and samples a fraction of high scor-
ing nodes. It avoids node aggregation and computing soft
assignment matrix to maintain the sparsity in graph opera-
tions. SAGPool improve upon TopK by using a GNN to con-
sider the graph structure while scoring nodes. Since TopK
and SAGPool do not aggregate nodes nor compute soft edge
weights, they are unable to preserve node and edge informa-
tion effectively.

To address these limitations, we propose ASAP, which
has all the desirable properties of hierarchical pooling with-
out compromising on sparsity in graph operations. Please
see Table. 1 for an overall comparison of hierarchical pool-
ing methods. Further comparison discussions between hier-
archical architectures are presented in Sec. 8.1.

3 Preliminaries
3.1 Problem Statement
Consider a graph G(V, E , X) with N = |V| nodes and |E|
edges. Each node vi ∈ V has d-dimensional feature repre-
sentation denoted by xi. X ∈ RN×d denotes the node fea-
ture matrix and A ∈ RN×N represents the weighted adja-
cency matrix. The graphG also has a label y associated with
it. Given a dataset D = {(G1, y1), (G2, y2), ...}, the task
of graph classification is to learn a mapping f : G → Y ,
where G is the set of input graphs and Y is the set of la-
bels associated with each graph. A pooled graph is denoted
by Gp(Vp, Ep, Xp) with node embedding matrix Xp and its
adjacency matrix as Ap.

3.2 Graph Convolution Networks
We use Graph Convolution Network (GCN) (Kipf and
Welling 2017) for extracting discriminative features for
graph classification. GCN is defined as:

X(l+1) = σ(D̂−
1
2 ÂD̂

1
2X(l)W (l)), (1)

where Â = A+ I for self-loops, D̂ =
∑
j Âi,j and W (l) ∈

Rd×f is a learnable matrix for any layer l. We use the initial
node feature matrix wherever provided, i.e., X(0) = X .

3.3 Self-Attention
Self-attention is used to find the dependency of an input on
itself (Cheng, Dong, and Lapata 2016; Vaswani et al. 2017).
An alignment score αi,j is computed to map the importance
of candidates cj on target query qi. In self-attention, target
query qi and candidates cj are obtained from input entities
h = {h1, ..., hn}. Self-attention can be categorized as To-
ken2Token and Source2Token based on the choice of target
query q (Shen et al. 2018).

Token2Token (T2T) selects both the target and candi-
dates from the input set h. In the context of additive attention
(Bahdanau, Cho, and Bengio 2014), αi,j is computed as:

αi,j = softmax(~vTσ(Whi ‖Whj)). (2)

where ‖ is the concatenation operator.

Source2Token (S2T) finds the importance of each candi-
date to a specific global task which cannot be represented
by any single entity. αi,j is computed by dropping the target
query term. Eq. (2) changes to the following:

αi,j = softmax(~vTσ(Whj)). (3)

3.4 Receptive Field
We extend the concept of receptive field RF from pooling
operations in CNN to GNN2. We define RFnode of a pool-
ing operator as the number of hops needed to cover all the
nodes in the neighborhood that influence the representation
of a particular output node. Similarly, RF edge of a pooling
operator is defined as the number of hops needed to cover all
the edges in the neighborhood that affect the representation
of an edge in the pooled graph Gp.

4 ASAP: Proposed Method
In this section we describe the components of our proposed
method ASAP. As shown in Fig. 1(b), ASAP initially con-
siders all possible local clusters with a fixed receptive field
for a given input graph. It then computes the cluster mem-
bership of the nodes using an attention mechanism. These
clusters are then scored using a GNN as depicted in Fig 1(c).
Further, a fraction of the top scoring clusters are selected as
nodes in the pooled graph and new edge weights are com-
puted between neighboring clusters as shown in Fig. 1(d).
Below, we discuss the working of ASAP in details. Please
refer to Appendix Sec. I for a pseudo code of the working of
ASAP.

4.1 Cluster Assignment
Initially, we consider each node vi in the graph as a medoid
of a cluster ch(vi) such that each cluster can represent only
the local neighbors N within a fixed radius of h hops i.e.,
ch(vi) = Nh(vi). This effectively means that RFnode = h
for ASAP. This helps the clusters to effectively capture the
information present in the graph sub-structure.
Let xci be the feature representation of a cluster ch(vi) cen-
tered at vi. We define Gc(V, E , Xc) as the graph with node

2Please refer to Appendix Sec. D for more details on similarity
between pooling methods in CNN and ASAP.



feature matrix Xc ∈ RN×d and adjacency matrix Ac = A.
We denote the cluster assignment matrix by S ∈ RN×N ,
where Si,j represents the membership of node vi ∈ V in
cluster ch(vj). By employing such local clustering (Schaef-
fer 2007), we can maintain sparsity of the cluster assignment
matrix S similar to the original graph adjacency matrix A
i.e., space complexity of both S and A is O(|E|).

4.2 Cluster Formation using Master2Token
Given a cluster ch(vi), we learn the cluster assignment ma-
trix S through a self-attention mechanism. The task here is
to learn the overall representation of the cluster ch(vi) by at-
tending to the relevant nodes in it. We observe that both T2T
and S2T attention mechanisms described in Sec. 3.3 do not
utilize any intra-cluster information. Hence, we propose a
new variant of self-attention called Master2Token (M2T).
We further motivate the need for M2T framework later in
Sec. 8.2. In M2T framework, we first create a master query
mi ∈ Rd which is representative of all the nodes within a
cluster:

mi = fm(x′j |vj ∈ ch(vi)}), (4)

where x′j is obtained after passing xj through a separate
GCN to capture structural information in the cluster ch(vi)

3.
fm is a master function which combines and transforms fea-
ture representation of vj ∈ ch(vi) to find mi. In this work
we experiment with max master function defined as:

mi = max
vj∈ch(vi)

(x′j). (5)

This master query mi attends to all the constituent nodes
vj ∈ ch(vi) using additive attention:

αi,j = softmax(~wTσ(Wmi ‖ x′j)). (6)

where ~wT and W are learnable vector and matrix re-
spectively. The calculated attention scores αi,j signifies the
membership strength of node vj in cluster ch(vi). Hence, we
use this score to define the cluster assignment matrix dis-
cussed above, i.e., Si,j = αi,j . The cluster representation xci
for ch(vi) is computed as follows:

xci =

|ch(vi)|∑
j=1

αi,jxj . (7)

4.3 Cluster Selection using LEConv
Similar to TopK (Gao and Ji 2019), we sample clusters
based on a cluster fitness score φi calculated for each clus-
ter in the graph Gc using a fitness function fφ. For a given
pooling ratio k ∈ (0, 1], the top dkNe clusters are se-
lected and included in the pooled graph Gp. To compute
the fitness scores, we introduce Local Extrema Convolu-
tion (LEConv), a graph convolution method which can cap-
ture local extremum information. In Sec. 5.1 we motivate
the choice of LEConv’s formulation and contrast it with the

3If xj is used as it is then interchanging any two nodes in a
cluster will have not affect the final output, which is undesirable.

standard GCN formulation. LEConv is used to compute φ as
follows:

φi = σ(xciW1 +
∑

j∈N (i)

Aci,j(x
c
iW2 − xcjW3)) (8)

whereN (i) denotes the neighborhood of the ith node inGc.
W1,W2,W3 are learnable parameters and σ(.) is some acti-
vation function. Fitness vector Φ = [φ1, φ2, ..., φN ]T is mul-
tiplied to the cluster feature matrix Xc to make fφ learnable
i.e.,:

X̂c = Φ�Xc,

where � is broadcasted hadamard product. The function
TOPk(.) ranks the fitness scores and gives the indices î of
top dkNe selected clusters in Gc as follows:

î = TOPk(X̂c, dkNe).

The pooled graph Gp is formed by selecting these top
dkNe clusters. The pruned cluster assignment matrix Ŝ ∈
RN×dkNe and the node feature matrix Xp ∈ RdkNe×d are
given by:

Ŝ = S(:, î), Xp = X̂c(̂i, :) (9)

where î is used for index slicing.

4.4 Maintaining Graph Connectivity
Following (Ying et al. 2018), once the clusters have been
sampled, we find the new adjacency matrix Ap for the
pooled graph Gp using Âc and Ŝ in the following manner:

Ap = ŜT ÂcŜ (10)

where Âc = Ac + I . Equivalently, we can see that Api,j =∑
k,l Ŝk,iÂ

c
k,lŜl,j . This formulation ensures that any two

clusters i and j in Gp are connected if there is any common
node in the clusters ch(vi) and ch(vj) or if any of the con-
stituent nodes in the clusters are neighbors in the original
graph G (Fig. 1(d)). Hence, the strength of the connection
between clusters is determined by both the membership of
the constituent nodes through Ŝ and the edge weights Ac.
Note that Ŝ is a sparse matrix by formulation and hence the
above operation can be implemented efficiently.

5 Theoretical Analysis
5.1 Limitations of using GCN for scoring clusters
GCN from Eq. (1) can be viewed as an operator which first
computes a pre-score φ̂′ for each node i.e., φ̂′ = XW fol-
lowed by a weighted average over neighbors and a non-
linearity. If for some node the pre-score is very high, it can
increase the scores of its neighbors which inherently biases
the pooling operator to select clusters in the local neighbor-
hood instead of sampling clusters which represent the whole
graph. Thus, selecting the clusters which correspond to local
extremas of pre-score function would potentially allow us to
sample representative clusters from all parts of the graph.



Method D&D PROTEINS NCI1 NCI109 FRANKENSTEIN

SET2SET (Vinyals, Bengio, and Kudlur 2016) 71.60 ± 0.87 72.16 ± 0.43 66.97 ± 0.74 61.04 ± 2.69 61.46 ± 0.47
GLOBAL-ATTENTION (Li et al. 2016) 71.38 ± 0.78 71.87 ± 0.60 69.00 ± 0.49 67.87 ± 0.40 61.31 ± 0.41
SORTPOOL (Zhang et al. 2018) 71.87 ± 0.96 73.91 ± 0.72 68.74 ± 1.07 68.59 ± 0.67 63.44 ± 0.65

DIFFPOOL (Ying et al. 2018) 66.95 ± 2.41 68.20 ± 2.02 62.32 ± 1.90 61.98 ± 1.98 60.60 ± 1.62
TOPK (Gao and Ji 2019) 75.01 ± 0.86 71.10 ± 0.90 67.02 ± 2.25 66.12 ± 1.60 61.46 ± 0.84
SAGPOOL (Lee, Lee, and Kang 2019) 76.45 ± 0.97 71.86 ± 0.97 67.45 ± 1.11 67.86 ± 1.41 61.73 ± 0.76

ASAP (Ours) 76.87± 0.7 74.19± 0.79 71.48± 0.42 70.07± 0.55 66.26± 0.47

Table 2: Comparison of ASAP with previous global and hierarchical pooling. Average accuracy and standard deviation is
reported for 20 random seeds. We observe that ASAP consistently outperforms all the baselines on all the datasets. Please refer
to Sec. 7.1 for more details.

Theorem 1. Let G be a graph with positive adjacency ma-
trix A i.e., Ai,j ≥ 0. Consider any function f(X,A) :
RN×d × RN×N → RN×1 which depends on difference be-
tween a node and its neighbors after a linear transformation
W ∈ Rd×1. For e.g,:

fi = σ(αixiW +
∑

j∈N (i)

βi,j(xiW − xjW ))

where fi, αi, βi,j ∈ R and xi ∈ Rd.

a) If fitness value Φ = GCN(X,A) then Φ cannot learn f.
b) If fitness value Φ = LEConv(X,A) then Φ can learn f.

Proof. See Appendix Sec. F for proof.

Motivated by the above analysis, we propose to use LEConv
(Eq. 8) for scoring clusters. LEConv can learn to score clus-
ters by considering both its global and local importance
through the use of self-loops and ability to learn functions
of local extremas.

5.2 Graph Connectivity
Here, we analyze ASAP from the aspect of edge con-
nectivity in the pooled graph. When considering h-hop
neighborhood for clustering, both ASAP and DiffPool have
RF edge = 2h + 1 because they use Eq. (10) to define the
edge connectivity. On the other hand, both TopK and SAG-
Pool haveRF edge = h. A larger edge receptive field implies
that the pooled graph has better connectivity which is im-
portant for the flow of information in the subsequent GCN
layers.
Theorem 2. Let the input graph G be a tree of any possi-
ble structure with N nodes. Let k∗ be the lower bound on
sampling ratio k to ensure the existence of atleast one edge
in the pooled graph irrespective of the structure of G and
the location of the selected nodes. For TopK or SAGPool,
k∗ → 1 whereas for ASAP, k∗ → 0.5 as N →∞.

Proof. See Appendix Sec. G for proof.

Theorem 2 suggests that ASAP can achieve a similar de-
gree of connectivity as SAGPool or TopK for a much smaller
sampling ratio k. For a tree with no prior information about
its structure, ASAP would need to sample only half of the
clusters whereas TopK and SAGPool would need to sample

almost all the nodes, making TopK and SAGPool inefficient
for such graphs. In general, independent of any combination
of nodes selected, ASAP will have better connectivity due
to its larger receptive field. Please refer to Appendix Sec. G
for a similar analysis on path graph and more details.

5.3 Graph Permutation Equivariance
Proposition 1. ASAP is a graph permutation equivariant
pooling operator.

Proof. See Appendix Sec. H for proof.

6 Experimental Setup
In our experiments, we use 5 graph classification bench-
marks and compare ASAP with multiple pooling methods.
Below, we describe the statistics of the dataset, the baselines
used for comparisons and our evaluation setup in detail.

6.1 Datasets
We demonstrate the effectiveness of our approach on 5 graph
classification datasets. D&D (Shervashidze et al. 2011; Dob-
son and Doig 2003) and PROTEINS (Dobson and Doig
2003; Borgwardt et al. 2005) are datasets containing pro-
teins as graphs. NCI1 (Wale, Watson, and Karypis 2008)
and NCI109 are datasets for anticancer activity classifica-
tion. FRANKENSTEIN (Orsini, Frasconi, and De Raedt
2015) contains molecules as graph for mutagen classifica-
tion. Please refer to Table 3 for the dataset statistics.

Dataset Gavg Cavg Vavg Eavg
D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.06 72.82
NCI1 4110 2 29.87 32.30
NCI109 4127 2 29.68 32.13
FRANKENSTEIN 4337 2 16.90 17.88

Table 3: Statistics of the graph datasets. Gavg , Cavg , Vavg
and Eavg denotes the average number of graphs, classes,
nodes and edges respectively.



6.2 Baselines
We compare ASAP with previous state-of-the-art hierarchi-
cal pooling operators DiffPool (Ying et al. 2018), TopK
(Gao and Ji 2019) and SAGPool (Lee, Lee, and Kang 2019).
For comparison with global pooling, we choose Set2Set
(Vinyals, Bengio, and Kudlur 2016), Global-Attention (Li
et al. 2016) and SortPool (Zhang et al. 2018).

6.3 Training & Evaluation Setup
We use a similar architecture as defined in (Cangea et al.
2018; Lee, Lee, and Kang 2019) which is depicted in Fig.
1(f). For ASAP, we choose k = 0.5 and h = 1 to be
consistent with baselines.4 Following SAGPool(Lee, Lee,
and Kang 2019), we conduct our experiments using 10-fold
cross-validation and report the average accuracy on 20 ran-
dom seeds.5

Aggregation type FITNESS CLUSTER

None - -
Only cluster - 3
Both 3 3

Table 4: Different aggregation types as mentioned in Sec
7.2.

7 Results
In this section, we attempt to answer the following ques-
tions:
Q1 How does ASAP perform compared to other pooling

methods at the task of graph classification? (Sec. 7.1)
Q2 Is cluster formation by M2T attention based node ag-

gregation beneficial during pooling? (Sec. 7.3)
Q3 Is LEConv better suited as cluster fitness scoring func-

tion compared to vanilla GCN? (Sec. 7.4)
Q4 How helpful is the computation of inter-cluster soft

edge weights instead of sampling edges from the input
graph? (Sec. 7.5)

7.1 Performance Comparison
We compare the performace of ASAP with baseline meth-
ods on 5 graph classification tasks. The results are shown
in Table 2. All the numbers for hierarchical pooling (Diff-
Pool, TopK and SAGPool) are taken from (Lee, Lee, and
Kang 2019). For global pooling (Set2Set, Global-Attention
and SortPool), we modify the architectural setup to make
them comparable with the hierarchical variants. 6. We ob-
serve that ASAP consistently outperforms all the baselines
on all 5 datasets. We note that ASAP has an average im-
provement of 4% and 3.5% over previous state-of-the-art

4Please refer to Appendix Sec. A for further details on hyper-
parameter tuning and Appendix Sec. E for ablation on k.

5Source code for ASAP can be found at: https://github.com/
malllabiisc/ASAP

6Please refer to Appendix Sec. B for more details

hierarchical (SAGPool) and global (SortPool) pooling meth-
ods respectively. We also observe that compared to other hi-
erarchical methods, ASAP has a smaller variance in perfor-
mance which suggests that the training of ASAP is more
stable.

7.2 Effect of Node Aggregation
Here, we evaluate the improvement in performance due to
our proposed technique of aggregating nodes to form a clus-
ter. There are two aspects involved during the creation of
clusters for a pooled graph:

• FITNESS: calculating fitness scores for individual nodes.
Scores can be calculated either by using only the medoid
or by aggregating neighborhood information.

• CLUSTER: generating a representation for the new clus-
ter node. Cluster representation can either be the medoid’s
representation or some feature aggregation of the neigh-
borhood around the medoid.

We test three types of aggregation methods: ’None’, ’Only
cluster’ and ’Both’ as described in Table 4. As shown in Ta-
ble 5, we observe that our proposed node aggregation helps
improve the performance of ASAP.

Aggregation FRANKENSTEIN NCI1

None 67.4 ±0.6 69.9 ± 2.5
Only cluster 67.5 ±0.5 70.6 ± 1.8
Both 67.8± 0.6 70.7± 2.3

Table 5: Performace comparison of different aggregation
methods on validation data of FRANKENSTEIN and NCI1.

Attention FRANKENSTEIN NCI1

T2T 67.6 ± 0.5 70.3 ± 2.0
S2T 67.7 ± 0.5 69.9 ± 2.0
M2T 67.8± 0.6 70.7± 2.3

Table 6: Effect of different attention framework on pool-
ing evaluated on validation data of FRANKENSTEIN and
NCI1. Please refer to Sec. 7.3 for more details.

7.3 Effect of M2T Attention
We compare our M2T attention framework with previously
proposed S2T and T2T attention techniques. The results are
shown in Table 6. We find that M2T attention is indeed better
than the rest in NCI1 and comparable in FRANKENSTEIN.

7.4 Effect of LEConv as a fitness scoring function
In this section, we analyze the impact of LEConv as a fit-
ness scoring function in ASAP. We use two baselines -
GCN (Eq. 1) and Basic-LEConv which computes φi =
σ(xiW +

∑
j∈N (xi)

Ai,j(xiW −xjW )). In Table 7 we can
see that Basic-LEConv and LEConv perform significantly

https://github.com/malllabiisc/ASAP
https://github.com/malllabiisc/ASAP


Fitness function FRANKENSTEIN NCI1

GCN 62.7±0.3 65.4±2.5
Basic-LEConv 63.1±0.7 69.8±1.9
LEConv 67.8±0.6 70.7±2.3

Table 7: Performance comparison of different fitness scor-
ing functions on validation data of FRANKENSTEIN and
NCI1. Refer to Sec. 7.4 for details.

better than GCN because of their ability to model func-
tions of local extremas. Further, we observe that LEConv
performs better than Basic-LEConv as it has three differ-
ent linear transformation compared to only one in the latter.
This allows LEConv to potentially learn complicated scor-
ing functions which is better suited for the final task. Hence,
our analysis in Theorem 1 is emperically validated.

7.5 Effect of computing Soft edge weights
We evaluate the importance of calculating edge weights for
the pooled graph as defined in Eq. 10. We use the best model
configuration as found from above ablation analysis and then
add the feature of computing soft edge weights for clusters.
We observe a significant drop in performace when the edge
weights are not computed. This proves the necessity of cap-
turing the edge information while pooling graphs.

Soft edge weights FRANKENSTEIN NCI1

Absent 67.8 ± 0.6 70.7 ± 2.3
Present 68.3± 0.5 73.4± 0.4

Table 8: Effect of calculating soft edge weights on pooling
for validation data of FRANKENSTEIN and NCI1. Please
refer to Sec. 7.5 for more details.

8 Discussion
8.1 Comparison with other pooling methods
DiffPool DiffPool and ASAP both aggregate nodes to
form a cluster. While ASAP only considers nodes which are
within h-hop neighborhood from a node xi (medoid) as a
cluster, DiffPool considers the entire graph. As a result, in
DiffPool, two nodes that are disconnected or far away in the
graph can be assigned similar clusters if the nodes and their
neighbors have similar features. Since this type of cluster
formation is undesirable for a pooling operator (Ying et al.
2018), DiffPool utilizes an auxiliary link prediction objec-
tive during training to specifically prevent far away nodes
from being clustered together. ASAP needs no such addi-
tional regularization because it ensures the localness while
clustering. DiffPool’s soft cluster assignment matrix S is
calculated for all the nodes to all the clusters making S a
dense matrix. Calculating and storing this does not scale eas-
ily for large graphs. ASAP, due to the local clustering over
h-hop neighborhood, generates a sparse assignment matrix

while retaining the hierarchical clustering properties of Diff-
pool. Further, for each pooling layer, DiffPool has to prede-
termine the number of clusters it needs to pick which is fixed
irrespective of the input graph size. Since ASAP selects the
top k fraction of nodes in current graph, it inherently takes
the size of the input graph into consideration.

TopK & SAGPool While TopK completely ignores the
graph structure during pooling, SAGPool modifies the TopK
formulation by incorporating the graph structure through the
use of a GCN network for computing node scores φ. To en-
force sparsity, both TopK and SAGPool avoid computing the
cluster assignment matrix S that DiffPool proposed. Instead
of grouping multiple nodes to form a cluster in the pooled
graph, they drop nodes from the original graph based on a
score (Cangea et al. 2018) which might potentially lead to
loss of node and edge information. Thus, they fail to lever-
age the overall graph structure while creating the clusters.
In contrast to TopK and SAGPool, ASAP can capture the
rich graph structure while aggregating nodes to form clus-
ters in the pooled graph. TopK and SAGPool sample edges
from the original graph to define the edge connectivity in
the pooled graph. Therefore, they need to sample nodes
from a local neighborhood to avoid isolated nodes in the
pooled graph. Maintaining graph connectivity prevents these
pooling operations from sampling representative nodes from
the entire graph. The pooled graph in ASAP has a better
edge connectivity compared to TopK and SAGPool because
soft edge weights are computed between clusters using upto
three hop connections in the original graph. Also, the use of
LEConv instead of GCN for finding fitness values φ further
allows ASAP to sample representative clusters from local
neighborhoods over the entire graph.

8.2 Comparison of Self-Attention variants

Source2Token & Token2Token T2T models the mem-
bership of a node by generating a query based only on
the medoid of the cluster. Graph Attention Network (GAT)
(Veličković et al. 2017) is an example of T2T attention in
graphs. S2T finds the importance of each node for a global
task. As shown in Eq. 3, since a query vector is not used
for calculating the attention scores, S2T inherently assigns
the same membership score to a node for all the possible
clusters that node can belong to. Hence, both S2T and T2T
mechanisms fail to effectively utilize the intra-cluster infor-
mation while calculating a node’s cluster membership. On
the other hand, M2T uses a master function fm to gener-
ate a query vector which depends on all the entities within
the cluster and hence is a more representative formulation.
To understand this, consider the following scenario. If in a
given cluster, a non-medoid node is removed, then the un-
normalized membership scores for the rest of the nodes will
remain unaffected in S2T and T2T framework whereas the
change will reflect in the scores calculated using M2T mech-
anism. Also, from Table 6, we find that M2T performs bet-
ter than S2T and T2T attention showing that M2T is better
suited for global tasks like pooling.



9 Conclusion
In this paper, we introduce ASAP, a sparse and differentiable
pooling method for graph structured data. ASAP clusters
local subgraphs hierarchically which helps it to effectively
learn the rich information present in the graph structure. We
propose Master2Token self-attention framework which en-
ables our model to better capture the membership of each
node in a cluster. We also propose LEConv, a novel GNN
formulation that scores the clusters based on its local and
global importance. ASAP leverages LEConv to compute
cluster fitness scores and samples the clusters based on it.
This ensures the selection of representative clusters through-
out the graph. ASAP also calculates sparse edge weights for
the selected clusters and is able to capture the edge connec-
tivity information efficiently while being scalable to large
graphs. We validate the effectiveness of the components of
ASAP both theoretically and empirically. Through extensive
experiments, we demonstrate that ASAP achieves state-of-
the-art performace on multiple graph classification datasets.

10 Acknowledgements
We would like to thank the developers of Pytorch Geometric
(Fey and Lenssen 2019) which allows quick implementation
of geometric deep learning models. We would like to thank
Matthias Fey again for actively maintaining the library and
quickly responding to our queries on github.

References
[Bahdanau, Cho, and Bengio 2014] Bahdanau, D.; Cho, K.; and

Bengio, Y. 2014. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

[Bastings et al. 2017] Bastings, J.; Titov, I.; Aziz, W.; Marcheg-
giani, D.; and Simaan, K. 2017. Graph convolutional encoders
for syntax-aware neural machine translation. Proceedings of the
2017 Conference on Empirical Methods in Natural Language Pro-
cessing.

[Borgwardt et al. 2005] Borgwardt, K. M.; Ong, C. S.; Schönauer,
S.; Vishwanathan, S.; Smola, A. J.; and Kriegel, H.-P. 2005. Protein
function prediction via graph kernels. Bioinformatics.

[Bronstein et al. 2017] Bronstein, M. M.; Bruna, J.; LeCun, Y.;
Szlam, A.; and Vandergheynst, P. 2017. Geometric deep learning:
going beyond euclidean data. IEEE Signal Processing Magazine.

[Bruna et al. 2013] Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun,
Y. 2013. Spectral networks and locally connected networks on
graphs. arXiv preprint arXiv:1312.6203.

[Cangea et al. 2018] Cangea, C.; Veličković, P.; Jovanović, N.;
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Appendix

A Hyperparameter Tuning
For all our experiments, Adam (Kingma and Ba 2014) opti-
mizer is used. 10-fold cross-validation is used with 80% for
training and 10% for validation and test each. Models were
trained for 100 epochs with lr decay of 0.5 after every 50
epochs. The range of hyperparameter search are provided in
Table 9. The model with best validation accuracy was se-
lected for testing. Our code is based on Pytorch Geometric
library (Fey and Lenssen 2019).

Hyperparameter Range

Hidden dimension {16, 32, 64, 128}
Learning rate {0.01, 0.001}
Dropout {0, 0.1, 0.2, 0.3, 0.4, 0.5}
L2 regularization 5e−4

Table 9: Hyperparameter tuning Summary.

B Details of Hierarchical Pooling Setup
For hierarchical pooling, we follow SAGPool (Lee, Lee, and
Kang 2019) and use three layers of GCN, each followed by
a pooling layer. After each pooling step, the graph is sum-
marized using a readout function which is a concatenation
of the mean and max of the node representations (simi-
lar to SAGPool). The summaries are then added and passed
through a network of fully-connected layers separated by
dropout layers to predict the class.

C Details of Global Pooling Setup
Global Pooling architecture is same as the hierarchical ar-
chitecture with the only difference that pooling is done only
after all GCN layers. We do not use readout function for

https://en.wikipedia.org/w/index.php?title=Starlike_tree&oldid=791882487
https://en.wikipedia.org/w/index.php?title=Starlike_tree&oldid=791882487


global pooling as they do not require them. To be compara-
ble with other models, we restrict the feature dimension of
the pooling output to be no more than 256. For global pool-
ing layers, range for hidden dimension and lr search was
same as ASAP.

Method Range

Set2Set processing-step ∈ {5, 10}
Global-Attention transform ∈ {True, False}
SortPool K is chosen such that output of pooling ≤ 256

Table 10: Global Pooling Hyperparameter Tuning Summary.

D Similarities between pooling in CNN and
ASAP

In CNN, pooling methods (e.g mean pool and max pool)
have two hyperparameter: kernel size and stride. Kernel size
decides the number of pixels being considered for comput-
ing each new pixel value in the next layer. Stride decides
the fraction of new pixels being sampled thereby controlling
the size of the image in next layer. In ASAP, RFnode de-
termines the neighborhood radius of clusters and k decides
the sampling ratio. This makes RFnode and k are analogous
to kernel size and stride of CNN pooling respectively. There
are however some key differences. In CNN, a given kernel
size corresponds to a fixed number of pixels around a cen-
tral pixel whereas in ASAP, the number of nodes being con-
sidered is variable, although the neighborhood RFnode is
constant. In CNN, stride uniformly samples from new pixels
whereas in ASAP, the model has the flexibility to attend to
different parts of the graph and sample accordingly.

E Ablation on pooling ratio k
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Figure 2: Validation Accuracy vs sampling ratio k on NCI1
dataset.

Intuitively, higher k will lead to more information reten-
tion. Hence, we expect an increase in performance with in-
creasing k. This is empirically observed in Fig. 2. However,
as k increases, the computational resources required by the
model also increase because a relatively larger pooled graph

gets propagated to the later layers. Hence, there is a trade-off
between performance and computational requirement while
deciding on the pooling ratio k.

F Proof of Theorem 1
Theorem 1. Let G be a graph with positive adjacency ma-
trix A i.e., Ai,j ≥ 0. Consider any function f(X,A) :
RN×d × RN×N → RN×1 which depends on difference be-
tween a node and its neighbors after a linear transformation
W ∈ Rd×d. For e.g:

fi = σ(αixiW +
∑

j∈N (i)

βi,j(xiW − xjW ))

where fi, αi, βi,j ∈ R and xi ∈ Rd.
a) If fitness value φ = GCN(X,A) then φ cannot learn f.
b) If fitness value φ = LEConv(X,A) then φ can learn f.

Proof. For GCN, φi = σ(
∑
j∈N (xi)∪{i}Ai,jxjW ) where

W is a learnable matrix. Since Ai,j ≥ 0, φi cannot have a
term of the form βi,j(xiW − xjW ) which proves the first
part of the theorem. We prove the second part by showing
that LEConv can learn the following function f :

fi = σ(αixiW +
∑

j∈N (i)

βi,j(xiW − xjW )) (11)

LEConv formulation is defined as:

φi = σ(xiW1 +
∑

j∈N (i)

Ai,j(xiW2 − xjW3)) (12)

where W1, W2 and W3 are learnable matrices. For W3 =
W2 = W1, α1 = 1 and βi,j = Ai,j we find Eq. (12) is equal
to Eq. (11).

G Graph Connectivity
Proof of Theorem 2
Definition 1. For a graph G, we define optimum-nodes
n∗h(G) as the maximum number of nodes that can be selected
which are atleast h hops away from each other.
Definition 2. For a given number of nodes N , we define
optimum-tree T ∗N as the tree which has maximum optimum-
nodes n∗h(TN ) among all possible trees TN with N nodes.
Lemma 1. Let T ∗N be an optimum-tree of N vertices and
T ∗N−1 be an optimum tree withN−1 vertices. The optimum-
nodes of T ∗N and T ∗N−1 differ by atmost one, i.e., 0 ≤
n∗h(T ∗N )− n∗h(T ∗N−1) ≤ 1.

Proof. Consider T ∗N which has N nodes. We can remove
any one of the leaf nodes in T ∗N to obtain a tree TN−1 with
N − 1 nodes. If any one of the nodes in n∗h(T ∗N ) was re-
moved, then n∗h(TN−1) would become n∗h(T ∗N ) − 1. If any
other node was removed , then being a leaf it does not con-
stitute the shortest path between any of the n∗h(TN−1) nodes.
This implies that the optimum-nodes for TN−1 is atleast
n∗h(T ∗N )− 1, i.e.,

n∗h(T ∗N )− 1 ≤ n∗h(TN−1) ≤ n∗h(T ∗N ) (13)



(a) Starlike tree (b) Path Graph

Figure 3: (a) Balanced Starlike tree with height 2. (b) Path
Graph

Since T ∗N−1 is the optimal-tree, we know that:

n∗h(TN−1) ≤ n∗h(T ∗N−1) (14)

Using Eq. (13) and (14) we can write:

n∗h(T ∗N )− n∗h(T ∗N−1) ≤ 1

which proves our lemma.

Lemma 2. Let T ∗N be an optimum-tree of N vertices and
T ∗N−1 be an optimum-tree of N − 1 vertices. T ∗N−1 is an
induced subgraph of T ∗N .

Proof. Let us choose a node to be removed from T ∗N and
join its neighboring nodes to obtain a tree TN−1 with N − 1
nodes with an objective of ensuring a maximum n∗h(TN−1).
To do so, we can only remove a leaf node from T ∗N . This
is because removing non-leaf nodes can reduce the short-
est path between multiple pairs of nodes whereas removing
leaf-nodes will reduce only the shortest path to nodes from
the new leaf at that position. This ensures least reduction
in optimum-nodes for TN−1. Removing a leaf node implies
that n∗h(TN−1) cannot be lesser than n∗h(T ∗N ) − 1 as it af-
fects only the paths involving that particular leaf node. Us-
ing Lemma 1, we see that TN−1 is equivalent to T ∗N−1, i.e.,
TN−1 is one of the possible optimal-trees with N −1 nodes.
Since TN−1 was formed by removing a leaf node from T ∗N ,
we find that T ∗N−1 is indeed an induced subgraph of T ∗N .

Definition 3. A starlike tree is a tree having atmost one node
(root) with degree greater than two (Wikipedia contributors
2017). We consider starlike tree with height

⌈
h/2

⌉
to be bal-

anced, if there is atmost one leaf which is at a height less
than

⌈
h/2

⌉
while the rest are all at a height

⌈
h/2

⌉
from the

root. Figure 3(a) depicts an example of a balanced starlike
tree with h = 2.

Definition 4. A path graph is a graph such that its nodes
can be placed on a straight line. There are not more than
only two nodes in a path graph which have degree one while
the rest have a degree of two. Figure 3(b) shows an example
of a path graph (Wikipedia contributors 2019).

Lemma 3. For a balanced starlike tree with height h/2,

where h is even, n∗h(TN ) =
⌊
N−1

h
2

⌋
, i.e., when the leaves

are selected.

Lemma 4. Among all the possible trees TN which have N
vertices, the maximum n∗h(TN ) achievable is

⌊
N−1

h
2

⌋
, which

is obtained if the tree is a balanced starlike tree with height
h/2 if h is even.

Proof. To prove the lemma, we use induction. Here, the base
case corresponds to a path graph Th+1 with h + 1 nodes, a
trivial case of starlike graph, as it has only 2 nodes which are
h hops away. From the formula

⌊
N−1

h
2

⌋
, we get n∗h(Th+1) =

2 which verifies the base case.
For any N − 1, let us assume that the lemma is true, i.e.,

a balanced starlike tree with height h/2 achieves the maxi-
mum n∗h(TN−1) for any tree TN−1 withN−1 vertices. Con-
sider T ∗N to be the optimal-tree for N nodes. From Lemma
(2), we know that T ∗N−1 is an induced subgraph of T ∗N . This
means that T ∗N can be obtained by adding a node to T ∗N−1.
Since we are constructing T ∗N , we need to add a node to
T ∗N−1 such that maximum nodes can be selected which are
atleast h hops away. There are three possible structures for
the tree T ∗N−1 depending on the minimum height among all
its branches: (a) minimum height among all the branches
is less than h/2 − 1, (b) minimum height among all the
branches is equal to h/2−1 and (c) minimum height among
all the branches is equal to h/2. Although case (a) is not
possible as we assumed T ∗N−1 to be a balanced starlike tree,
we consider it for the sake of completeness. For case (a), no
matter where we add the node, n∗h(T ∗N ) will not increase.
However, we should add the node to the leaf of the branch
with least height as it will allow the new leaf of that branch
to be chosen in case the number of nodes in tree is increased
to some N

′
> N such that height of that branch becomes

h/2. For case (b), we should add the node to the leaf of the
branch with least height so that its height becomes h/2 and
the new leaf of that branch gets selected. For case (c), no
matter where we add the node, n∗h(T ∗N ) will not increase.
Unlike case (a), we should add the new node to the root so
as to start a new leaf which could be selected if that branch
grows to a height h/2 for some N

′
> N . For all the three

cases, T ∗N is a balanced starlike tree as the new node is either
added to the leaf of a branch if minimum height of a leaf is
less than h/2 or to the root if the minimum height of the
branches is h/2. Hence, by induction, the lemma is proved.

Theorem 2. Let the input graph T be a tree of any pos-
sible structure with N nodes. Let k∗ be the lower bound on
sampling ratio k to ensure the existence of atleast one edge
in the pooled graph irrespective of the structure of T and
the location of the selected nodes. For TopK or SAGPool,
k∗ → 1 whereas for ASAP, k∗ → 0.5 as N →∞.

Proof. From Lemma (4) and (3), we know that among all
the possible trees TN which have N vertices, the maximum
n∗h(TN ) achievable is

⌊
N−1

h
2

⌋
. Using pigeon-hole principle



101 102 103 104

N: number of vertices

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
k*

: l
ow

es
t s

am
pl

in
g 

ra
tio

Tree Graph
ASAP
TopK & SAGPool

Figure 4: Minimum sampling ratio k∗ vs N for Path-Graph

we can show that for a pooling method with RF edge if the
number of sampled clusters is greater than n∗RF edge(TN )
then there will always be an edge in the pooled graph ir-
respective of the position of the selected clusters:

dk∗Ne >
⌊ N − 1
RF edge+1

2

⌋
k∗N >

⌊ N − 1
RF edge+1

2

⌋
k∗N + 1 >

N − 1
RF edge+1

2

(15)

Let us consider 1-hop neighborhood for pooling, i.e., h = 1.
SubstitutingRF edge = h in Eq. (15) for TopK and SAGPool
we get:

k∗ > 1− 2

N

and as N→ ∞ we obtain k∗ → 1. Substituting RF edge =
2h+ 1 in Eq. (15) for ASAP we get:

k∗ >
1

2
− 3

2N

and as N→∞ we obtain k∗ → 0.5

Similar Analysis for Path Graph
Lemma 5. For a path graph Gpath with N nodes,
n∗h(Gpath) = dNh e.
Lemma 6. Consider the input graph to be a path graph
Gpath with N nodes. To ensure that a pooling operator
with RF edge and sampling ratio k has at least one edge
in the pooled graph, irrespective of the location of se-
lected clusters, we have the following inequality on k: k ≥
( 1
RF edge+1

+ 1
N ).

Proof. From Lemma (5), we know that n∗RF edge(Gpath) =

d N
RF edge e. Using pigeon-hole principle we can show that for

a pooling method with RF edge, if the number of sampled

clusters is greater than n∗RF edge(Gpath), then there will al-
ways be an edge in the pooled graph irrespective of the po-
sition of the selected clusters:

dkNe >
⌈ N

RF edge + 1

⌉
kN >

⌈ N

RF edge + 1

⌉
kN ≥ N

RF edge + 1
+ 1

(16)

From Eq. (16), we get k ≥ ( 1
RF edge+1

+ 1
N ) which com-

pletes the proof.
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Figure 5: Minimum sampling ratio k∗ vs N for Path-Graph

Theorem 3. Consider the input graph to be a path graph
with N nodes. Let k∗ be the lower bound on sampling ratio
k to ensure the existence of atleast one edge in the pooled
graph. For TopK or SAGPool, k∗ → 0.5 asN →∞whereas
for ASAP, k∗ → 0.25 as N →∞.

Proof. From Lemma (6), we get k∗ = 1
RF edge+1

+ 1
N . Using

h = 1 for TopK and SAGPool when N tends to infinity i.e.
k∗ = limN→∞

1
2 + 1

N , we get k∗ → 0.25. Using h = 3 for
ASAP when N tends to infinity i.e. k∗ = limN→∞

1
4 + 1

N ,
we get k∗ → 0.25.

Graph Connectivity via kth Graph Power.
To minimize the possibility of nodes getting isolated in
pooled graph, TopK employs kth graph power i.e. Âk in-
stead of Â. This helps in increasing the density of the graph
before pooling. While using kth graph power, TopK can
connect two nodes which are atmost k hops away whereas
ASAP in this setting can connect upto k + 2h hops in the
original graph. As h ≥ 1, ASAP will always have better
connectivity given kth graph power.

H Graph Permutation Equivariance
Given a permutation matrix P ∈ {0, 1}n×n and a function
f(X,A) depending on graph with node feature matrix X
and adjacency matrix A, graph permutation is defined as
f(PX,PAPT ), node permutation is defined as f(PX,A)



and edge permutation is defined as f(X,PAPT ). Graph
pooling operations should produce pooled graphs which
are isomorphic after graph permutation i.e., they need to
be graph permutation equivariant or invariant. We show
that ASAP has the property of being graph permutation
equivariant.

Proposition 1. ASAP is a graph permutation equivariant
pooling operator.

Proof. Since S is computed by an attention mechanism
which attends to all edges in the graph, we have:

S → PSPT (17)

Selecting top dkNe clusters denoted by indices i, changes Ŝ
as:

Ŝ → PŜ(P [i, i])T (18)

Using Eq. (18) and Ŝ = S(:, î), Xp = X̂c(̂i), we can write:

Xp → P [i, i]Xp (19)

Since Ap = ŜT ÂcŜ and Ŝ = S(:, î), Xp = X̂c(̂i), we get:

Ap → P [i, i]Ap(P [i, i])T (20)

From Eq. (19) and Eq. (20), we see that graph permutation
does not change the output features. It only changes the or-
der of the computed feature and hence is isomorphic to the
pooled graph.

I Pseudo Code
Algorithm 1 is a pseudo code of ASAP. The Master2Token
working is explained in Algorithm 2.

Algorithm 1: ASAP algorithm
Input : Graph G(V, E); Node features X;

Weighted adjacency matrix A;
Master2Token attention function
MASTER2TOKEN; Local Extrema
Convolution operator LECONV; pooling
ratio k; Top-k selection operator TOPK;
non-linearity σ

Intermediate: Clustered graph Gc(V, E) with node
features Xc and weighted adjacency
matrix Ac; Cluster assignment matrix S;
Cluster fitness vector Φ

Output : Pooled graph Gp with node features Xp

and weighted adjacency matrix Ap

1 Xc, S ← MASTER2TOKEN(X,A);
2 Ac ← A;
3 Φ← LECONV(Xc, Ac);
4 X̂c ← Φ�Xc;
5 î← TOPK(Φ, k);
6 Ŝ ← S(:, î);
7 Xp ← X̂c(̂i, :);
8 Ap ← ŜT ÂcŜ

Algorithm 2: MASTER2TOKEN algorithm
Input : Graph G(V, E); Node features X; Weighted

adjacency matrix A; Graph Convolution
operator GCN; Weight matrix W , weight
vector ~w; softmax function softmax; Cluster
neighborhood function ch

Output: Clustered graph node features Xc; Cluster
assignment matrix S

1 X ′ ← GCN(X,A);
2 for i = 1...|V| do
3 xci ← ~0;
4 mi ← maxj∈ch(vi)(x

′
j).;

5 for j ∈ ch(vi) do
6 αi,j ← softmax(~wTσ(Wmi ‖ x′j));
7 Si,j ← αi,j ;
8 xci ← xci + αi,jxj ;
9 end

10 end
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